
Package: SOR (via r-universe)
August 30, 2024

Type Package

Title Estimation using Sequential Offsetted Regression

Version 0.23.1

Date 2018-04-25

Depends Matrix

Imports methods, stats

Description Estimation for longitudinal data following outcome
dependent sampling using the sequential offsetted regression
technique. Includes support for binary, count, and continuous
data. The first regression is a logistic regression, which
uses a known ratio (the probability of being sampled given that
the subject/observation was referred divided by the probability
of being sampled given that the subject/observation was no
referred) as an offset to estimate the probability of being
referred given outcome and covariates. The second regression
uses this estimated probability to calculate the mean
population response given covariates.

License GPL-3

NeedsCompilation no

Author Lee McDaniel [aut, cre], Jonathan Schildcrout [aut]

Maintainer Lee McDaniel <lmcda4@lsuhsc.edu>

Date/Publication 2018-04-25 19:30:40 UTC

Repository https://lsubioscomputing.r-universe.dev

RemoteUrl https://github.com/cran/SOR

RemoteRef HEAD

RemoteSha 831027827b82faf379331a6a7bfedcdf530e2f06

Contents
sor . 2

Index 6

1

2 sor

sor Sequentially Offsetted Regression

Description

Fits model for data which was sampled based on a variable associated with the outcome. This
function works for binary, count, and continuous responses.

Usage

sor(y.formula,
w1.formula,
w2.formula = ~1,
id,
waves = NULL,
family = "binomial",
y0 = 0,
hfunc = identity,
support = c(0,1),
pi1.pi0.ratio = 1,
data = parent.frame(),
init.beta=NULL,
init.sig.2 = 1,
weights=NULL,
est.var = TRUE,
CORSTR="independence")

Arguments

y.formula Regression formula for response

w1.formula Formula for Z, not interacted with hfunc(Y). Of form Z~terms

w2.formula Formula for Z, interacted with hfunc(Y). Of form ~terms

id a vector identifying the clusters. By default, data are assumed to be sorted such
that observations in a cluster are in consecutive rows and higher numbered rows
in a cluster are assumed to be later. If NULL, then each observation is assigned
its own cluster.

waves an integer vector identifying components of a cluster. For example, this could be
a time ordering. If integers are skipped within a cluster, then dummy rows with
weight 0 are added in an attempt to preserve the correlation structure (except if
corstr = "exchangeable" or "independent"). This can be skipped by setting
nodummy=TRUE.

family Character string representing reference distribution for the response. Can be one
of "normal", "poisson", or "binomial".

y0 Representative value of response. Ignored if family="binomial".

hfunc Function h, used with Y. Set to identity if family="binomial".

sor 3

support Values on which to evaluate the integrals. The lowest value should be less than
the minimum response and the highest should be higher than the maximum re-
sponse. If response is binary, support should be c(0,1). If response is count data,
support should be an integer vector, for instance 0:50. If response is continuous,
support should be a vector of points on which to integrate.

pi1.pi0.ratio The referral ratio

data Data frame or environment with all the data

init.beta Initial values for parameters in y.formula. Convergence may depend heavily
on the initial values used. If family="binomial", the default is recommended.

init.sig.2 Initial value for sigma^2. Only for family="normal".

weights A vector of weights for each observation. If an observation has weight 0, it
is excluded from the calculations of any parameters. Observations with a NA
anywhere (even in variables not included in the model) will be assigned a weight
of 0. This should normally be used to preserve the correlation structure.

est.var Logical. Should the variance be estimated. Only for family="normal".

CORSTR Correlation structure

Value

Returns a list with values from the fit.

Author(s)

Lee S. McDaniel, Jonathan S. Schildcrout

References

This package relies heavily on code from geeM:

McDaniel, L. S., Henderson, N. C., & Rathouz, P. J. (2013). Fast pure R implementation of GEE:
application of the matrix package. The R journal, 5(1), 181.

Examples

generatedata <- function(beta,alpha,X,ntime,nsubj, betat, betat1) {

mean.vec <- exp(crossprod(t(X), beta))
y <- matrix(0,nrow=nsubj, ncol=ntime)
y[,1] <- rpois(nsubj ,lambda = mean.vec)
old.mean <- mean.vec
new.mean <- old.mean*exp(betat + betat1*X[,2])
for (t in 1:(ntime-1)) {

lambda.t <- new.mean - alpha*sqrt(old.mean*new.mean)
theta.t <- alpha*sqrt(new.mean/old.mean)
I <- rpois(nsubj, lambda = lambda.t)
W <- rbinom(nsubj, y[,t], theta.t)

y[,t+1] = W + I
old.mean <- new.mean

4 sor

new.mean <- old.mean*exp(betat + betat1*X[,2])
}
longform <- c(t(y))
time <- rep(1:ntime,times=nsubj)
subject <- rep(c(1:nsubj),each=ntime)

simdata <- data.frame(count = longform, time = time, subject=subject)
return(simdata)

}
logit <- function(p) log(p)-log(1-p)
expit <- function(x) exp(x)/(1+exp(x))
set.seed(1)

npop <- 10000
beta0 <- -1.4
beta1 <- 0.4
alpha <- 0.9
gam0 <- -3.15
gam1 <- 6.3
nsubj <- 200
ntime <- 8
betat <- -0.1; betat1 <- 0.1
thresh <- 1

x0 <- rep(1, npop)
x1 <- rbinom(npop, 1, 0.5)

Xmat <- cbind(x0, x1)
timevec <- 0:(ntime-1)

testdat <- generatedata(c(beta0, beta1), alpha, Xmat, ntime, npop, betat = betat, betat1 = betat1)
Y <- matrix(testdat$count, nrow=npop, ncol=ntime, byrow=TRUE)
lambdap <- expit(gam0 + gam1*as.numeric(Y[,1]>=thresh))
Z <- rbinom(npop, 1, lambdap)

casesamp <- rep(0, npop)
casesamp[Z==1] <- rbinom(sum(Z), 1, nsubj/(2*sum(Z)))
controlsamp <- rep(0, npop)
controlsamp[Z==0] <- rbinom(sum(1-Z), 1, nsubj/(2*sum(1-Z)))

case <- which(casesamp==1)
control <- which(controlsamp==1)
id <- sort(c(case, control))
nsubj <- length(control) + length(case)
Ysamp <- NULL
lamsamp <- NULL
zsamp <- NULL
x1samp <- NULL
idsamp <- NULL
time <- NULL
obspersubj <- sample(3:ntime, size=nsubj, replace=TRUE)
for(i in 1:nsubj){

sor 5

Ysamp <- c(Ysamp, Y[id[i],1:obspersubj[i]])
zsamp <- c(zsamp, rep(as.numeric(Z[id[i]]), obspersubj[i]))
x1samp <- c(x1samp, rep(x1[id[i]], obspersubj[i]))
time <- c(time, 0:(obspersubj[i]-1))
idsamp <- c(idsamp, rep(i, obspersubj[i]))

}
p1p0 <- sum((1-Z))/sum(Z)

timemax <- pmax(time-2, 0)
y0 <- 1
betas <- c(beta0, beta1, betat, betat1)
init <- runif(4, betas -0.1, betas + 0.1)

y.formula <- y~x1+time + x1:time
w1 <- z ~ x1+ as.factor(time) + x1:time + x1:timemax
w2 <- ~x1 + time + timemax + x1:time + x1:timemax

DAT.ods <- data.frame("x1"= x1samp, "time" = time,
"timemax" = timemax, "z" = zsamp, "y" = Ysamp, "id" = idsamp)

sor(y.formula, w1, w2, id, family="poisson",y0=1,
support=0:25, pi1.pi0.ratio=p1p0, data=DAT.ods, init.beta=init, CORSTR="ar1")

Index

SOR (sor), 2
sor, 2
SOR-package (sor), 2

6

	sor
	Index

